Search results for "collective models"
showing 10 items of 16 documents
Isovector and isoscalar spin-multipole giant resonances in the parent and daughter nuclei of double-β-decay triplets
2022
The strength distributions, including giant resonances, of isovector and isoscalar spin-multipole transitions in the commonly studied double-β-decay triplets are computed in the framework of the quasiparticle random-phase approximation (QRPA) using the Bonn-A two-body interaction in no-core single-particle valence spaces. The studied nuclei include the double-β parent and daughter pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo, 100Ru), (116Cd, 116Sn), (128Te, 128Xe), (130Te, 130Xe), and (136Xe, 136Ba). The studied transitions proceed from the ground states to the Jπ=0−,1−,2− (spin-dipole transitions) and Jπ=1+,2+,3+ (spin-quadrupole transitions) excited states in these nuclei. Compa…
Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory
2017
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…
Spectroscopy of low-spin states in $^{157}\mathrm{Dy}$: Search for evidence of enhanced octupole correlations
2019
Low-spin states of 157Dy have been studied using the JUROGAM II array, following the 155Gd ({\alpha}, 2n) reaction at a beam energy of 25 MeV. The level scheme of 157Dy has been expanded with four new bands. Rotational structures built on the [523]5/2- and [402]3/2+ neutron orbitals constitute new additions to the level scheme as do many of the inter- and intra-band transitions. This manuscript also reports the observation of cross I- to (I-1)- and I- to (I-1)+ E1 dipole transitions inter-linking structures built on the [523]5/2- (band 5) and [402]3/2+ (band 7) neutron orbitals. These interlacing band structures are interpreted as the bands of parity doublets with simplex quantum number s =…
Neutrinoless ββ nuclear matrix elements using isovector spin-dipole Jπ = 2− data
2018
Ground-state-to-ground-state neutrinoless double-beta (0νββ) decays in nuclei of current experimental interest are revisited. In order to improve the reliability of the nuclear matrix element (NME) calculations for the light Majorana-neutrino mode, the NMEs are calculated by exploiting the newly available data on isovector spin-dipole (IVSD) Jπ=2− giant resonances. In order to correctly describe the IVSD up to and beyond the giant-resonance region, the present computations are performed in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with two-nucleon interactions based on the Bonn one-boson-…
Isovector spin-multipole strength distributions in double-β-decay triplets
2017
In this work the energetics and strength distributions of isovector spin-dipole and spin-quadrupole transitions from the ground states of the pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo, 100Ru), (116Cd, 116Sn), (128Te, 128Xe), (130Te, 130Xe), and (136Xe, 136Ba), of double-β-decay initial and final nuclei, to the Jπ=0−,1−,2−,1+,2+, and 3+ excited states of the intermediate odd-odd nuclei 76As, 82Br, 96Nb, 100Tc, 116In, 128,130I, and 136Cs are investigated. The calculations are performed using a proton-neutron quasiparticle random-phase approximation (pnQRPA) theory framework with the Bonn-A two-body interaction in no-core single-particle valence spaces. peerReviewed
Structure of transactinide nuclei with relativistic energy density functionals
2013
A microscopic theoretical framework based on relativistic energy density functionals (REDFs) is applied to studies of shape evolution, excitation spectra, and decay properties of transactinide nuclei. Axially symmetric and triaxial relativistic Hartree-Bogoliubov (RHB) calculations, based on the functional DD-PC1 and with a separable pairing interaction, are performed for the even-even isotopic chains between Fm and Fl. The occurrence of a deformed shell gap at neutron number $N=162$ and its role on the stability of nuclei in the region around $Z=108$ is investigated. A quadrupole collective Hamiltonian, with parameters determined by self-consistent constrained triaxial RHB calculations, is…
X(5) critical-point symmetries in 138Gd
2011
International audience; The lifetimes of low-lying transitions in 138Gd have been measured using the recoil-distance Doppler-shift technique. The resultant reduced transition probabilities have been compared to X(5) critical-point calculations to assess the potential 'phase-transitional' behaviour of 138Gd. The X(5) symmetry describes the first order 'phase transition' between sphericity, U(5) and an axially deformed nuclear shape, SU(3). Although a high degree of correspondence is observed between the experimental and theoretical excitation energies, the large uncertainties of the experimental B(E2) values cannot preclude contributions from either vibrational or rotational modes of excitat…
Isovector spin-multipole strength distributions in double- β -decay triplets
2017
In this work the energetics and strength distributions of isovector spin-dipole and spin-quadrupole transitions from the ground states of the pairs ($^{76}\mathrm{Ge}, ^{76}\mathrm{Se}$), ($^{82}\mathrm{Se}, ^{82}\mathrm{Kr}$), ($^{96}\mathrm{Zr}, ^{96}\mathrm{Mo}$), ($^{100}\mathrm{Mo}, ^{100}\mathrm{Ru}$), ($^{116}\mathrm{Cd}, ^{116}\mathrm{Sn}$), ($^{128}\mathrm{Te}, ^{128}\mathrm{Xe}$), ($^{130}\mathrm{Te}, ^{130}\mathrm{Xe}$), and ($^{136}\mathrm{Xe}, ^{136}\mathrm{Ba}$), of double-$\ensuremath{\beta}$-decay initial and final nuclei, to the ${J}^{\ensuremath{\pi}}={0}^{\ensuremath{-}},{1}^{\ensuremath{-}},{2}^{\ensuremath{-}},{1}^{+},{2}^{+}$, and ${3}^{+}$ excited states of the interm…
Collective rotation of an oblate nucleus at very high spin
2019
International audience; A sequence of nine almost equidistant quadrupole transitions is observed in Nd137. The sequence represents an extremely regular rotational band that extends to a spin of about 75/2 and an excitation energy of ≈4.5MeV above yrast. Cranked mean-field calculations of the Nilsson-Strutinsky type suggest an oblate shape for the band. They reproduce the observed I(I+1) dependence of the rotational energy whereas predicting a pronounced decrease in the deformation, which is the hallmark of antimagnetic rotation.
Shape coexistence in $^{178}$Hg
2019
Lifetime measurements of excited states in 178 Hg have been performed using the 103 Rh ( 78 Kr , p 2 n ) reaction at a beam energy of 354 MeV. The recoil-decay tagging (RDT) technique was applied to select the 178 Hg nuclei and associate the prompt γ rays with the correlated characteristic ground-state α decay. Lifetimes of the four lowest yrast states of 178 Hg have been determined using the recoil distance Doppler-shift (RDDS) method. The experimental data are compared to theoretical predictions with focus on shape coexistence. The results confirm the shift of the deformed prolate structures to higher lying states but also indicate their increasing deformation with decreasing neutron numb…